If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+0.4x-0.12=0
a = 1; b = 0.4; c = -0.12;
Δ = b2-4ac
Δ = 0.42-4·1·(-0.12)
Δ = 0.64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.4)-\sqrt{0.64}}{2*1}=\frac{-0.4-\sqrt{0.64}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.4)+\sqrt{0.64}}{2*1}=\frac{-0.4+\sqrt{0.64}}{2} $
| (2x-111)=(1x+9) | | 7=7/5n | | 9(p+4)+-3=8+2p | | 22=4x+(-x+16) | | 12p+5(p-6)=4 | | 5x9-2x=12 | | 2x^2=x^2+6 | | 20=-4n+12 | | 6+3x=8x+-5 | | 12y+4=2(5y+8)-12 | | 4=k7 | | 2n=18n= | | 3x^2+1.2x-0.36=0 | | 360=k+76+64 | | 9-x=9+2x | | b/3-2.3=1.29 | | (x+59)+x+31+84=180 | | 1.1^x=1 | | 3(4x+8)=2x+19 | | 2(a–4)+7=–19 | | x/4.9=2.8 | | 12)2m-3)=2(m+4) | | 2.7=t-1.1/3 | | -15(t)^2+300(t)-200=0 | | 2p-68=p+21 | | 3(4x+8)+2x+19=180 | | k−59=13 | | 16x^2+16x+32=0 | | -35+e=16 | | n+26=64 | | -5t+41=-54 | | 11+x=7-2x |